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Directed polymer in random media in two dimensions: Numerical study of the aging dynamics

A. Barrat*
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et à l’Université de Paris Sud, 24 rue Lhomond, 75231 Paris Cedex 05, France
~Received 21 October 1996!

Following a recent work by Yoshino@J. Phys. A29, 1421 ~1996!#, we study the aging dynamics of a
directed polymer in random media, in 111 dimensions. Through temperature quench and temperature cycling
numerical experiments similar to the experiments on real spin glasses, we show that the observed behavior is
comparable to that of a well-known mean-field spin glass model. The observation of various quantities~cor-
relation function, ‘‘clonation’’ overlap function, etc.! leads to an analysis of the phase space landscape.
@S1063-651X~97!00704-6#

PACS number~s!: 02.50.Ey, 74.60.Ge, 75.10.Nr
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I. INTRODUCTION

The study of directed polymers in random media has t
gered a lot of interest and of works~for a recent review, see
@1#!, since it is related to many fields, from the fluctuations
interfaces@2# to quantum-mechanical problems in a tim
dependent random potential@3#, or the very topical problem
of vortex lines in high-temperature superconductors@4#. It
also has connections with spin glasses, as has been show
Derrida and Spohn@5#, who studied a mean-field version~on
a Cayley tree! of the random polymer, showing the existen
of a low-temperature phase similar to the random ene
model of Derrida@6#.

In finite dimensions (d11, with d transverse dimen
sions!, the existence of a phase transition has been shown
d>2 @7–9#, whereas the system is always in a low
temperature phase ford51, and has been called a ‘‘bab
spin glass’’ in@10#.

The dynamics of such a model has not been much stu
so far. A recent numerical work by Yoshino@11# has made
clear the existence of aging for the directed polymer in r
dom media in dimensions 111, with violation of time trans-
lation invariance and of the fluctuation-dissipation theore
The observed behavior for the correlation function is sim
to the scaling properties for the simulations of a thre
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dimensional spin glass model@12#. It is analyzed along the
lines of a scenario similar to the droplets model for sp
glasses@13,14#: the polymer moves in a network of ‘‘tubes’
where its probability of presence~calculated at equilibrium
with a transfer matrix method! is high. The network has a
quite complicated spatial structure, and the tubes form lo
of various sizes. The dynamics consists then of rapid fl
tuations inside the tubes~acting as traps! combined with
thermally activated jumps between different tubes. Th
thermal excitations are compared to the droplets excitatio
Besides, the fact that the loops display a broad distribution
sizes@15# induces a broad distribution of relaxation time
and thus aging.

On the other hand, Cugliandolo, Kurchan, and Le Do
sal, following the study of the aging dynamics of a mea
field spin glass model@16#, and of a particle in an infinite
dimensional random potential@17,18#, have proposed an ana
lytical treatment of the long times off equilibrium dynamic
of an elastic manifold embedded in an infinite dimensio
space, in the presence of a quenched random potential@19#
~the statics of such a model has been studied by Me´zard and
Parisi with a replica variational Gaussian approximation,
coming exact in this infinite dimensional limit@20#!. This
corresponds here to an infinited. The finite dimension of the
manifold leads to the study of the relaxation of its Four
modesk. The two-times correlation and response functio
Ck(t,t8) andr k(t,t8) satisfy dynamical equations where tw
regimes can be separated, as for the case of the par
@17,18#: a stationary regime, and a regime displaying agi
where the properties of equilibrium dynamics~namely, time

s,
s:
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5652 55A. BARRAT
translation invariance and fluctuation dissipation theore!
are violated. Various equations can be written for the lo
times behavior of the functions, for example, the measure
the violation of the fluctuation dissipation theoremX(C)
does not depend onk.

We will here focus on the same model as@11#; after de-
scribing this model, the used dynamics, we perform sev
numerical experiments for aging dynamics. Preparing
polymer in its ground state, we also show that it can disp
stationary dynamics, and compare the two kinds of dynam
in order to analyze the phase space landscape.

A. Model

The polymer is defined on a square lattice of linear s
N: it consists of N monomers lying on the site
$( i ,xi),i51, . . . ,N%, and the Hamiltonian is

H@$xi%#5(
i52

N

@ uxi2xi21u1V~ i ,xi !#, ~1!

whereV is a Gaussian random potential, with zero mean a
variances, uncorrelated from site to site. The first ter
gives the elastic energy; moreover, the stepsuxi2xi21u are
restricted to 0 or 1, and one of the extremities is fixed,
that a Boltzmann measure can be defined:x15N/2.

The transfer matrix method can be used to study the s
ics of this model@10#. In particular, the Edwards-Anderso
~EA! parameter can be calculated, following@10#: we take
two replicas of the polymer, with the same realization of t
disordered potential; ifZ(x,y,L) is the partition function for
the pairs of polymers arriving at transverse coordinatesx and
y after L steps ~or monomers!, and if Z̃(x,y,q,L) is the
partition function restricted to such pairs having an over
q, it is possible to write recursion relations inL for Z and
Y(x,y,L)5(qqZ̃(x,y,q,L), and therefore to evaluate

lim
L→`

1

L

(
x,y
Y~x,y,L !

(
x,y
Z~x,y,L !

, ~2!

and to average it over disorder to obtainqEA . We will use
this value to check some expected long time limits of d
namical quantities~see below!.

The directed polymer is evolving with Monte Carlo d
namics in a heat bath in the following way: a monomer a
a move are chosen at random, and the move is perfor
with probability min@1,exp(2bDE)# ~Metropolis algorithm!,
b being the inverse temperature, andDE the change of en-
ergy involved. One Monte Carlo step consists inN such
tries.

B. Numerical experiments

The transfer matrix method allows us to find the grou
state in a given realization of a potential; we have studied
dynamics in two cases: the initial configuration is eith
taken at random, or as the ground state. The polymer, th
fore, coming from an infinite temperature or from a ze
temperature thermalized state, is then free to evolve at
temperature of the heat bath. We then measure the evolu
of the energy, the two-times correlation function defined
-
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C~ tw1t,tw!5K (
i51

N

dxi ~ tw1t !,xi ~ tw!L , ~3!

where ^ & is a mean over thermal noise and the overli
denotes a mean over realizations of the quenched diso
and the overlap between two copies of the polymer evolv
in the same realization of the potential, with the same th
mal noise untiltw , and then decoupled@21–24# ~a process
called ‘‘clonation’’ in @21#!; if these copies are labeled by~1!
and ~2!, this overlap is

Qtw
~ tw1t,tw1t !5K (

i51

N

dx
i
~1!~ tw1t !,xi

~2!~ tw1t !L . ~4!

Besides, we have performed temperature cycling exp
ments in the same way as for real spin glasses@25#. Most of
the runs have been made with a polymer of lengthN5500,
and some withN5800: no finite size effects were seen f
the used simulation times.

II. AGING DYNAMICS

A. Quench at initial time

The initial configuration of the polymer is chosen at ra
dom, with the constraintuxi2xi21u50 or 1; then it evolves
at a fixed temperature. It has already been observed@11# that
the correlation functionC(tw1t,tw) previously defined dis-
plays aging behavior: it depends explicitly ontw and t ~see
Fig. 1!; as the system ages, it becomes more rigid, in
sense that it evolves slower and gets away from itself alw
slower.

For times t much lower thantw , the dynamics has the
characteristics of equilibrium dynamics:C(tw1t,tw) de-
pends only ont ~time translation invariance!, and it has been
checked numerically@11# that the fluctuation-dissipation
theorem is valid. Besides, we have also checked the vali
of the relationQtw

(tw1t,tw1t)5C(tw12t,tw) @24#. In this
regime, we have therefore a quasiequilibrium dynam
Some well-known spin glass models~like, for example, the
p-spin spherical model@16# or the random manifold@17,19#!
present a correlation function decaying from 1 toqEA , with a
power law approach to theqEA plateau:qEA1At2n.

We have been able to fit the results of the simulatio
with such form, using the values ofqEA obtained by the
transfer matrix method: this fit therefore uses only two p
rameters, and not three~see Fig. 2 for the values, and Fig.
for examples of the fits!. The obtained values ofn ~typically
in the range 0.120.2) are displayed in Fig. 3.

For timest comparable to or bigger thantw , the correla-
tion functionC(tw1t,tw) depends explicitly ontw : the dy-
namics is no more time translation invariant. Fort@tw , it
decays as a power law,

C~ tw1t,tw!. f ~ tw ,T!~ t/tw!2l. ~5!

We are therefore in the presence of a weak-ergodicity bre
ing behavior, limt→`C(tw1t,tw)50 @26#. The obtained val-
ues ofl are comparable to the values ofn ~see Fig. 3!, and
both exponents are increasing functions of temperature,
in real spin glasses@25#.



-
,

e

a-
t

e

ite

ly
, and

re,
very
s
e

-
nt

-

d,

55 5653DIRECTED POLYMER IN RANDOM MEDIA IN TWO . . .
It is important to note that then exponent is different
from thex exponent studied by Yoshino@11#: this x is ob-
tained by the scaling form

C~ tw1t,tw!.t2x ~6!

FIG. 1. ~a! From bottom to top,C(tw1t,tw) versus t for
tw550, 500, 5000, and 100 000, atT51, and the fit
Cas(t)50.6510.25t20.08. ~b! C(tw1t,tw) versust for T53 and
tw52000, 50000, and 100 000, andCas(t)50.2410.545t20.185. In
both cases,qEA(T51)50.65 andqEA(T53)50.24 have been ob
tained by the transfer matrix method.

FIG. 2. Values ofqEA obtained by the transfer matrix metho
versus temperature.
for the t!tw part, with a global form

C~ tw1t,tw!5t2xF~ t/tw!. ~7!

If we take the limit limtw→`limt→` we obtain the same be
havior, but the opposite order of limits
limt→`limtw→`C(tw1t,tw) yields 0, in contradiction with
the expected static limit

limt→`limtw→`C~ tw1t,tw!5qEA , ~8!

which is also obtained by the formqEA1At2n.
With numerical data, however, it is difficult to prefer on

of these forms, and much longer simulations~much bigger
values oftw) would be necessary.

If we now look at the overlap between two replicas sep
rated attw ,Qtw

, it seems that this function has a finite limit a

large timest ~see Fig. 4!, with a value compatible with the
value ofqEA , for big enoughtw . This constatation puts this
model in the class I of the classification of@24#, which in-
cludes domain-growth models, and thep52 spherical
p-spin model@23#: it indicates that the evolution in phas
space takes place in ‘‘corridors’’@21#, of sizeqEA . On the
contrary, the case of the manifold embedded in an infin
dimensional space yields limtw→`limt→`Qtw

(tw1t,tw
1t)50, and therefore belongs to type II, which probab
indicates a much more complex phase-space landscape
occurs also, for example, for thep-spin spherical model with
p>3 @24#.

B. Temperature cycling experiments

A spin glass quenched under its transition temperatu
and then submitted to temperature changes, shows a
puzzling behavior~see @25# for a review, and reference
therein! that we briefly describe now. After a quench at tim
t50, the temperature cycle is as follows~see Fig. 5!: the
temperature isT from t50 to t5t1, then T1DT from
t5t1 to t5t2, and againT after t5t2; DT can be negative as
well as positive. For a positiveDT, one observes a reinitial
ization of the dynamics, with, e.g., for a thermoremane
magnetization, a relaxation aftert2 identical to the one ob-
tained after a quench att50 and a waiting time
teff5tw2t2. On the contrary, for a negativeDT, the system

FIG. 3. Exponentsl ~for T51,2,3,4,5) andn ~for T51,2,3)
versus temperature.
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5654 55A. BARRAT
keeps memory of its evolution, and its relaxation cor
sponds to an effective age betweentw and tw2t21t1.

We have performed these jumps numerically w
T52, DT51,2,21, t15500, andt251500. We have then
monitored the evolution of the energy of the polymer, as w
asCjump(tw1t,tw) with tw52000, comparing these quant
ties with the ones obtained forDT50 ~constant tempera
ture!.

It is clear ~Fig. 6! that Cjump(tw1t,tw) corresponds to a
certainC(teff1t,teff), teff being an effective age for the sys
tem, depending ont22t1 and onDT; teff is less thantw for
a negativeDT, which means that the dynamic has be
slowed down by the time spent at a lower temperature; h
we estimateteff510005tw2t21t1 @for DT521, the data
corresponding to Cjump(20001t,2000) with
t15500, t251500 are superimposed on the cur
C(10001t,1000)#. For smaller values ofDT, or longer times
t22t1 , teff can be bigger thantw2t21t1: the time spent at
T1DT can contribute a little to the aging. For positive va
ues of DT, teff is bigger thantw ~in Fig. 6, teff53000),
showing that the time spent atT1DT has contributed to the
approach to equilibrium more than the same time atT.

The behavior of the directed polymer is therefore sy
metrical for positive or negative variations of temperatu
No reinitialization of dynamics is found. This type of beha
ior is similar to the one observed for mean-field spin glas

FIG. 4. ~a! Qtw
(tw1t,tw1t) for tw550, 500, 5000,

at T51, in logarithmic scale and~b! Qtw
(tw1t,tw1t) versus

C(tw1t,tw) for tw550, at T51. At T51, qEA'0.65.
-

ll

re

-
.

s

@25,23#, and thus very different from the one observed in re
experiments on spin glasses.

It should be remarked that real experiments deal with
response function, whereas we are monitoring correlati
functions. However, numerical simulations of a three

FIG. 5. Temperature cycles.

FIG. 6. Results of the temperature cycling experiments: T
symbols showC(tw1t,tw) at constant temperatureT52 for
tw51000 ~squares!, tw52000 ~crosses!, andtw53000 ~diamonds!.
The temperature cycles are done and witht15500, t251500, and
tw52000, atT52, and yieldCjump(tw1t,tw): the corresponding
curves are superimposed onC(10001t,1000) forDT521 and on
C(30001t,3000) forDT51.
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55 5655DIRECTED POLYMER IN RANDOM MEDIA IN TWO . . .
dimensional Ising spin glass model have shown also for
correlation functions@27# a partial reinitialization of the dy-
namics for positiveDT, and asymmetric outcomes of nu
merical experiments with positive or negative temperat
cycles. Nothing of this kind is found here.

III. RELAXATION FROM THE GROUND STATE

The transfer matrix method allows us to find the grou
state of the polymer, given a realization of the potential. W
then let the polymer evolve at temperatureT as before.

The measure of the correlation functionC(tw1t,tw) for
various tw and t shows in this case a simplet dependence
the system is time translation invariant~Fig. 7!. Besides,
C(tw1t,tw) does not seem to go to zero for larget, or at
least stays well above the correlation at the same times, f
system with random initial condition, for the accessib
times: no power law decayt2l is found. It seems that ergod
icity is really, and not simply weakly, broken.

We have also studied the dynamics for an initial config
ration of energy close to the ground state energy, but s

FIG. 7. C(tw1t,tw) versust, in logarithmic scales: compariso
of the evolutions for various initial conditions. For each figure, t
three lower curves correspond to random initial conditio
@~a! for T51, tw5500, 5000, 100 000, and~b! for T52, tw
510 000, 50 000, 100 000#, while three curves corresponding t
the system being prepared in its ground state at initial time
superimposed onto each other~with the same waiting timestw as
for the lower curves!, showing thatC(tw1t,tw) depends only on
t in this case.
e

e

e

r a

-
a-

tially well separated. In this case, we observe a similar
havior, with a time translation invariant correlation functio

Such behavior has been observed, for example, in
TAP states of thep-spin spherical model withp>3 @28#.

IV. ENERGY

We have monitored the evolution of the energy dens
Eal of the polymer; for a random initial condition the initia
energy is high, so the initial behavior is a fast decay, f
lowed by a much slower evolution.

When the polymer is prepared in its ground state, on
contrary, its energyEf grows quickly because of the therm
bath, and then stays constant.

We show in Fig. 8 the difference between the ener
densities for both situations, in logarithmic scales: this p
shows that the evolution is compatible with a power la
decay ofEal towardsEf . All the aging dynamics, therefore
take place at higher energy densities than those of the
lying states, where the dynamics is stationary.

V. DISCUSSION

Whereas the previous analysis of the dynamics made
Yoshino was based on an analogy with the droplets mo
@13,14#, we focus here more on a phase space analysis.

s

re

FIG. 8. ~a! Evolution of the energies as a function of time, fo
T52, for random initial conditions~upper curve!, or for a system
prepared in its ground state~lower curve!. ~b! Eal2Ef versus time,
for T52, in logarithmic scale~symbols!; the straight line corre-
sponds to the power lawt20.15.
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5656 55A. BARRAT
It must, however, be clear that, as for many numeri
simulations, especially for glassy systems, the available t
scales remain quite small, and that the results should th
fore be considered as tendencies, indications of beha
They allow us, with these precautions, to present the follo
ing analysis.

The observed behavior is quite similar to the one fou
for the sphericalp-spin model withp52: the dynamic con-
sists in a slow search of the ground state, with a slow
decaying energy. There exists many states with low ene
but the polymer is not able to find them, during its agi
dynamics: it remains at higher energy density; on the c
trary, if it is put in one of these configurations, it sta
trapped and has a stationary dynamics.

The behavior of the overlap of two copies of the syste
having the same configurations until a certain time, and t
decoupled, shows besides that the evolution takes plac
some kind of ‘‘gutters’’ in phase space. The results of te
perature cycling experiments also show that the direc
polymer in 111 dimensions is a much simpler system th
real spin glasses. These two results are probably related
also in agreement, concerning the relative simplicity of
phase space, with the fact@11# that the response to a tilt fiel
applied at the end of the polymer does not display any ag
,
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however, it would be nice to measure the response to a
tially sinusoidal field, and the relaxation after cutting th
field, to check if such a relaxation has aging, and how
depends from the wavelength of the field. However,
sample-to-sample fluctuations of the response functions
very important, and such measurements are therefore
difficult.

These behaviors are in fact intermediate between
p52 sphericalp-spin model~analogous to domain growth
@23#! and thep>3 case, which, despite being a mean-fie
model, displays a much more complicated behavior w
long term memory and a very complex phase space@16#.

It would certainly be very interesting to study the direct
polymer dynamics in higher dimensions: these new dim
sions could provide a way to avoid energy barriers by go
around them. The appearance of these entropy barriers@29–
32# could yield new interesting effects and a richer dynam
in a more complex phase space.

ACKNOWLEDGMENTS

It is a pleasure to thank M. Me´zard, who initiated this
work, and R. Monasson for useful discussions and co
ments.
ev.

F.
@1# T. Halpin-Healy and Y.-C. Zhang, Phys. Rep.254, 215~1995!.
@2# D. A. Huse and C. L. Henley, Phys. Rev. Lett.54, 2708

~1985!.
@3# M. Kardar, Nucl. Phys. B290, 582 ~1987!.
@4# G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin

and V. M. Vinokur, Rev. Mod. Phys.66, 1125~1994!.
@5# B. Derrida and H. Spohn, J. Stat. Phys.51, 817 ~1988!.
@6# B. Derrida, Phys. Rev. Lett.45, 79 ~1980!.
@7# J. Z. Imbrie and T. Spencer, J. Stat. Phys.52, 609 ~1988!.
@8# J. Cook and B. Derrida, J. Stat. Phys.57, 89 ~1989!.
@9# B. Derrida and O. Golinelli, Phys. Rev. A41, 4160~1990!.
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